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Melatonin has a profound effect on the pacemaker of the 

central mechanism of a heart.1–3 That this heart is in a fly 

should not affect the importance of this fact. Drosophila 

melanogaster has done yeoman service across biology 

beginning with providing the foundation of modern 

genetics.4,5 Multiple Nobel prizes, the most recent in 2017, 

have gone to those working with the fly.5 This fly work 

includes cardiology. The fly heart has been studied 

extensively.6–10 Its physiology has been described in detail 

and this includes an understanding of basic hormonal 

control.11,12 The sarcolemmal pacemaker’s central ion 

channels are well established, and the physiology and 

components of the companion cytosolic pacemaker have 

also been studied in detail.11–18 The utility of the fly 

genome in the study of the mammalian heart has been 

clearly proven. Long QT syndrome, a congenital problem 

in which individuals suffer a delay in cardiac 

repolarization,19–21 has been found to be a result of a 

mutation in a gene originally found in the fly.22–25 The 

human Ether a go Related Gene, or hERG is a homolog of 

the fly gene seizure and cDNA from this gene was used to 

locate its human relative.22 There have been over 1600 

human disease genes uncovered to date and nearly three 

quarters of these have Drosophila homologs. About 500 

are highly conserved and known to be functionally 

equivalent in both organisms.26 With this mind, 

cardiologists might well look to the fly for answers to 

basic questions about underlying heart physiology, 

genetics, and pathology. 

Melatonin makes the fly heartbeat extremely regular.1–3 It 

cannot be emphasized too strongly that the alteration in 

heartbeat we observe is unprecedented. We showed this is 

not an artifact of an increase in rate.1 Melatonin is 

commonly used in humans to prevent damage by reactive 

oxygen species (ROS) during reperfusion after myocardial 

infarction.27 Reports of increased heartbeat regularity 

attribute this to the antioxidant effects.27–31 However, this 

was shown not to be the case in the fly; ascorbic acid has 

no such effect in Drosophila.1 It is important to note here 

that the profound change in the signal to noise ratio in the 

fly work is against a background of a fairly irregular 

heartbeat in the normal fly.1–3 Mammalian hearts are also 

not particularly regular under normal conditions, to the 

point that there has been considerable work done to find 

out if this is a result of the underlying oscillator being 

fundamentally chaotic.32–34 In humans, an abnormally 

regular heartbeat can be a sign of congestive heart 

failure.32–34 

One crucial observation from these studies is that 

melatonin can yield normal wild–type heart function in 

flies carrying a mutation in one of the genes encoding a 

central ion channel in the sarcolemal pacemaker, 

slowpoke, which normally shows a weak, highly erratic 

heartbeat.14 The beating observed after melatonin 

application is equal to the extremely abnormal high 

regularity seen in wild–type. This is, by itself, a 

provocative finding. It would be comparable to a car being 

made to run normally with an engine which has broken a 
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camshaft. A possible explanation is at hand. Considerable 

evidence has accumulated that there is a second cardiac 

pacemaker in the cytosol termed the LCR, for Local 

Calcium Release.35–39 Evidence for such an oscillator is 

strong. One compelling observation is that pacemaking 

can continue in a vertebrate heart cell when the plasma 

membrane of the cell is voltage clamped!35 This oscillator 

depends on Calcium currents passing through the 

membrane of the sarcoplasmic reticulum.35–39 There are 

two central ion channels: one is the ryanodine receptor 

allowing efflux and the other is the 

Sarcoplasmic/Endoplasmic Calcium ATPase (SERCA) 

effecting reuptake.40–42 Mutations in the genes encoding 

these channels affect heart function considerably40–42 and 

melatonin is relatively ineffective in ameliorating the 

effects.3 An immediate hypothesis is that melatonin is 

fundamentally affecting the communication between these 

two pacemakers. If the sarcolemmal oscillator fails, 

responsibility would shift entirely to the LCR system. A 

switch to the LCR oscillator would also explain the wild– 

type results.1–3 

 

It is of importance to learn how melatonin works. Two 

possibilities present themselves. The effect could be 

directly on the pacemaker through interactions with the 

ion channels comprising the oscillator. A second control 

pathway possibility would be through binding with a 

receptor. The latter is initially favored by the kinetics of 

the alteration. We observed that the switch between 

normal mode and hyper regularity occurs sharply, literally 

from one beat to the next after an interval post injection.1 

With this in mind, we tested melatonin receptor agonists 

and antagonists with positive results. Luzindole is a 

melatonin receptor antagonist, and it is effective in 

interdicting melatonin’s action. In contrast, 2‑[125I] 

iodomelatonin, a melatonin agonist, is even more effective 

in increasing the rhythmicity than melatonin.1 The next 

step was to identify the receptor. We used RNAi knockout 

techniques to probe likely orphan G Protein Coupled 

Receptor (GPCR) genes for a candidate. Knocking out the 

function of the CG4313 orphan completely eliminated the 

melatonin response.1 This finding makes it almost certain 

that the mechanism is receptor mediated. 

 

The flies have done their job. There is ample reason to 

hypothesize that given the similarities between the 

systems, these findings could be extended to the 

mammalian heart. The reported examples of increased 

regularity in hearts given melatonin to preclude 

reperfusion damage after infarct are strong evidence this is 

the case, especially in light of our finding that the 

antioxidant ascorbic acid has no effect on rhythmicity.1 

The basic work needs to be done, and translational work 

would not be far behind. 
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