

From Leaf to Laboratory: Validating Tribal Ethnomedicinal Wisdom through In Silico Science

Mohammad Nadeem khan,¹ Praveen Chandra Dubey,² Sanjay Vyas,³ Shushil Upadhayay,⁴ Arjun Prasad Tiwari,⁵

¹Department of Pharmacology (Clinical Pharmacology), Sri Aurobindo Medical College and PG Institute, Sri Aurobindo University, Indore, India

²Ex-Principal Chief Conservator of Forests (PCCF), Government of Madhya Pradesh, India

³Department of Microbiology and Horticulture, Govt. Holkar Science College, Indore, India

⁴Project Coordinator, CSR/CER Activity, Traditional Healer, Sri Aurobindo University (Indore), SFRI, Jabalpur, Madhya Pradesh, India

⁵National history museums, Mysore, Karnataka

Correspondence: Mohammad Nadeem khan, Department of Pharmacology (Clinical Pharmacology) Sri Aurobindo Medical College & PG Institute, Sri Aurobindo University, Indore, Madhya Pradesh, India-453555, Email: sahani.nadeem35@gmail.com

Received: December 31, 2025

Published: January 15, 2026

Citation: Nadeem khan M. From Leaf to Laboratory: Validating Tribal Ethnomedicinal Wisdom through In Silico Science. Int J Bio and Med. 2026;1(1):13–18.

Copyright: ©2026 Nadeem khan M. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.

Abstract

Background

Traditional ethnomedicinal knowledge preserved by tribal communities represents an invaluable yet underexplored resource for modern drug discovery. However, the lack of systematic scientific validation and ethical integration has limited its translational impact in contemporary biology and medicine.

Objective

This manuscript presents an integrative “leaf-to-laboratory” framework that scientifically validates tribal ethnomedicinal wisdom using advanced *in silico* methodologies, while ensuring sustainability, ethical compliance, and translational relevance.

Methods

Ethnomedicinally significant plant species traditionally used by tribes of the Narmada Valley (Central India) were systematically evaluated through a multi-tiered *in silico* pipeline. Phytochemical libraries were curated and subjected to molecular docking, receptor–ligand interaction analysis, and structure–activity relationship assessment using state-of-the-art computational platforms. Predicted pharmacokinetic and toxicity profiles were further assessed to prioritize lead compounds. The overall workflow and mechanistic insights are illustrated

schematically in **Figure 1**, while **Figure 2** summarizes receptor-specific interaction networks and therapeutic targeting strategies.

Results

Computational screening revealed several bioactive phytochemicals with high binding affinity toward clinically relevant molecular targets, including opioid, GABAergic, and hypoxia-responsive pathways. These findings provide molecular-level validation for the traditional use of plants such as *Mitragyna speciosa*, *Garuga pinnata*, and *Bauhinia* spp. The *in silico* prioritization strategy significantly reduced experimental burden while enhancing predictive accuracy, thereby offering a sustainable alternative to conventional resource-intensive pharmacological screening.

Innovation and Significance

This study advances an ethically grounded, eco-conscious, and technologically robust paradigm that bridges indigenous knowledge systems with modern computational biology. By aligning *in silico* drug discovery with the principles of the Nagoya Protocol, the proposed approach safeguards biodiversity, prevents biopiracy, and promotes equitable benefit sharing.

Conclusion

The integration of tribal ethnomedicine with advanced *in silico* validation represents a transformative strategy for sustainable and inclusive biomedical innovation. This framework not only accelerates natural-product-based drug discovery but also repositions indigenous knowledge as a scientifically credible and ethically protected contributor to future therapeutic development.

Keywords: Ethnobotany; In-Silico Validation; Tribal Medicine; Computational Drug Discovery; Biodiversity Conservation; Nagoya Protocol

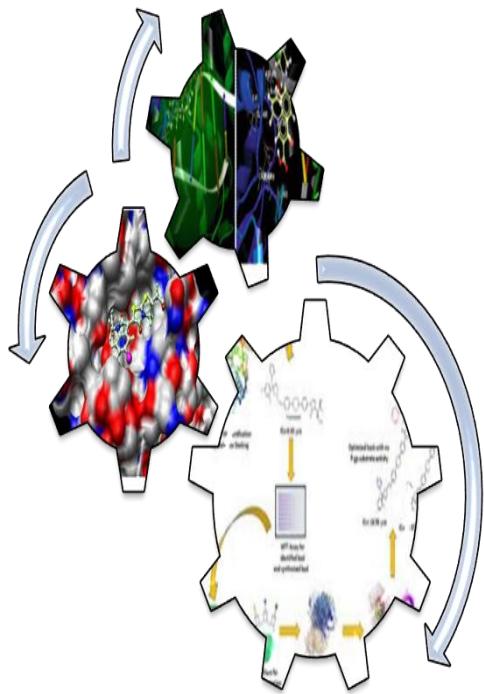
The forests of India are living repositories of knowledge—green sanctuaries where nature and human wisdom have coexisted for millennia.

Within these vast ecosystems, tribal communities have preserved ancient healing traditions based on their intimate understanding of forest biodiversity. Their ethnomedicinal wisdom forms the foundation of countless herbal practices that have sustained generations without the aid of modern pharmaceuticals.¹

Today, science is rediscovering this ancient treasure. By combining traditional knowledge with cutting-edge computational technologies, researchers are transforming age-old tribal remedies into validated, sustainable solutions for modern healthcare challenges. This exciting convergence of tradition and technology is what we now call “from leaf to laboratory.”

The Roots of Tribal Wisdom

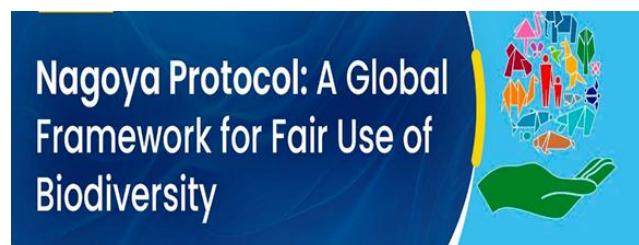
In India’s heartland—especially among the tribes of Madhya Pradesh, Chhattisgarh, Odisha, and Jharkhand—the forest is both a pharmacy and a teacher. Traditional healers identify plants not merely by their appearance but by their energy, behavior in the ecosystem, and the ailments they heal. In the Narmada Valley, home to vibrant tribal communities across


Alirajpur, Jhabua, and Dhar districts of Madhya Pradesh, the forest serves as both a healer and a heritage. Here, traditional healers, known locally as Damor, Bhagats or Vaidyas, hold a deep and time-tested understanding of local flora. Among the many medicinal plants, *Mitragyna speciosa* (locally called Chito Kalmi), *Garuga pinnata* (known as Ganiayara), and *Bauhinia variegata* (popularly known as Kachnar) are of particular importance for their ethnomedicinal significance.²

Mitragyna speciosa leaves are prized for their calming and analgesic properties often used to relieve anxiety, fatigue, and chronic pain. *Garuga pinnata* is recognized for its anti-inflammatory and restorative effects, traditionally employed to treat wounds and internal ailments. Kachnar, on the other hand, is widely used for glandular swellings, digestive issues, and skin conditions. These plants not only serve therapeutic purposes but also form a part of the tribal cultural identity and healing rituals passed down through generations.³

Today, this indigenous wisdom of the Narmada Valley is gaining scientific attention. Modern *In silico* studies are exploring and validating the pharmacological potential of these species, ensuring that this invaluable traditional knowledge is preserved, ethically recognized, and transformed into innovations that continue to benefit humankind.

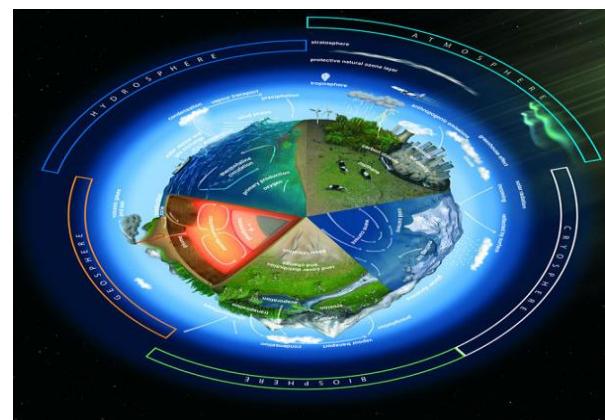
oo oo oo


In Silico Science: The New Frontier

The term *In-silico* refers to research conducted through advanced computer-based simulations and molecular modeling—an innovation that has transformed traditional ethnobotanical knowledge into scientifically validated insight. By leveraging powerful algorithms and molecular docking platforms, researchers can now visualize how plant-derived compounds interact with specific human receptor proteins, revealing their potential therapeutic roles long before laboratory testing begins.⁴

For instance, alkaloids from *Mitragyna speciosa* (*Chito Kalmi*) have shown significant binding affinity with opioid and GABA receptors, supporting their traditional use for pain relief and anxiety modulation. Similarly, *Garuga pinnata* (*Ganiayara*) exhibits promising inhibitory interactions with opioid receptors, suggesting its potential application in palliative care and pain management for chronic or terminal illnesses. Furthermore, *Bauhinia racemosa* has emerged as a candidate of interest in *In-silico* HIF (Hypoxia-Inducible Factor) inhibition studies, offering a potential role in managing conditions such as sickle cell anemia, where hypoxia-driven mechanisms play a critical part.⁵

These virtual explorations not only accelerate the discovery of bioactive phytochemicals but also ensure that indigenous medicinal wisdom—rooted in centuries of tribal practice—is validated through precise molecular science. *In-silico* methodologies thus bridge the gap between forest-based healing traditions and modern therapeutic innovation, paving the way for safer, sustainable, and culturally inclusive drug discovery. Through this approach, researchers can prioritize the most effective phytochemicals before moving on to laboratory and clinical testing—saving time, cost, and natural resources.⁶


Ethics and the Nagoya Protocol

The validation of tribal ethnomedicine must also respect the principles of *equity and conservation*. *The Nagoya Protocol on Access and Benefit Sharing (ABS)* ensures that indigenous communities receive fair recognition and benefits when their traditional knowledge contributes to scientific advancement or commercial development. This

global framework protects biodiversity, encourages ethical research collaboration, and prevents Biopiracy. By combining *In-silico* validation with such ethical practices, researchers honor both the scientific and cultural dimensions of ethnomedicine.⁷

Sustainability through Science

In the age of climate change and ecological fragility, science must evolve hand in hand with sustainability. *In-silico* research—the use of computer-based simulations for studying molecular interactions—embodies this green transformation in modern science. Unlike traditional laboratory experiments that demand extensive plant material or animal testing, *in silico* methods offer an eco-conscious alternative, dramatically reducing environmental impact while enhancing accuracy and efficiency.⁸

By merging digital innovation with ancient tribal wisdom, researchers are creating a path that honors both nature and knowledge. This approach aligns seamlessly with the United Nations Sustainable Development Goals (SDGs)—particularly those promoting good health, industry innovation, and life on land. Through such harmony between technology and tradition, we not only validate the curative power of plants but also ensure their preservation for generations to come.⁹

Celebrating the Forest's Future

The forest stands as a timeless bridge between humanity and nature—where tradition, science, and sustainability converge. In every leaf, root, and flower lies a story of healing passed down through generations, now being rediscovered through the lens of modern research. The integration of traditional ethnomedicinal wisdom with contemporary *In-silico* validation represents not only scientific progress but also a deep respect for the cultural and ecological heritage that sustains it.¹⁰

Each plant studied and every molecule modeled digitally symbolizes a step toward sustainable healthcare innovation—one that values both ancestral insight and technological advancement. The forest, in this sense, continues to inspire discovery while reminding us that true progress lies in harmony with nature, not dominance over it.¹¹

Conclusion

The journey “from leaf to laboratory” is not merely about transforming traditional knowledge into modern science—it is about building bridges between generations, disciplines, and cultures. By merging ethnomedicine with *In-silico* science, we are creating a sustainable and respectful path for future drug discovery. This integration ensures that tribal wisdom, nurtured under the green canopy of India’s forests, continues to heal humanity—scientifically validated, ethically protected, and globally celebrated. The forest, after all, remains our oldest teacher and our newest laboratory.

Acknowledgement

None.

Funding

None.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. *Mol Aspects Med.* 2006;27(1):1–93.
2. Khan MN, Bhandari M, Vyas S, et al. Harnessing ethnomedicinal knowledge of Narmada Valley tribes in Central India for opioid receptor targeting in cancer palliative care management. *J Cancer Res Rev.* 2025;2(2):57–74.
3. Kamble SY, Patil SR, Sawant PS. Ethnomedicinal use of *Bauhinia racemosa* Lam. in tribal communities of Central India and its pharmacological prospects. *Indian J Tradit Knowl.* 2021;20(3):654–662.
4. Lyu J, Wang S, Baliaus TE, et al. Ultra-large library docking for discovering new chemotypes. *Nature.* 2019;566(7743):224–229.
5. Kruegel AC, Grundmann O. The medicinal chemistry and neuropharmacology of kratom: A preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. *Neuropharmacology.* 2018;134:108–120.
6. Awasthi M, Sharma R, Verma A. Computational approaches in natural product drug discovery: Bridging tradition and technology. *Front Pharmacol.* 2022;13:964512.
7. Convention on Biological Diversity. Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from Their Utilization. Montreal: United Nations; 2011.
8. Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. *Br J Pharmacol.* 2007;152(1):9–20.
9. United Nations. Transforming our world: the 2030 Agenda for Sustainable Development. New York: United Nations; 2015.
10. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. *Environ Health Perspect.* 2001;109(Suppl 1):69–75. Patwardhan B, Mashelkar RA. Traditional medicine-inspired approaches to drug discovery: can Ayurveda show the way forward? *Drug Discov Today.* 2009;14(15–16):804–811.