Editorial
It’s time to make melatonin a useful tool in improving cardiac rhythmicity
Harold Dowse
School of Biology and Ecology, University of Maine, Emeritus, USA
Correspondence: Harold Dowse, Harold Dowse, Department of Biology and Ecology, Box 5751, Murray Hall, University of Maine, Orono, ME 04460–5751, USA, Email [email protected]
Received: February 01, 2024 Published: February 13, 2024
Citation: Dowse H. It’s time to make melatonin a useful tool in improving cardiac rhythmicity. AOJ Emerg and Int Med. 2024;1(1):29–31.
Copyright: ©2024 Dowse. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.
Keywords: Drosophila, melatonin, cardiac, rhythmicity
References
1. VanKirk T, Powers E, Dowse HB. Melatonin increases the regularity of cardiac rhythmicity in the Drosophila heart in both wild–type and strains bearing pathogenic mutations. J Comp Physiol B. 2017;187(1):63–78.
2. Dowse H, VanKirk T. Drosophila as a Model System for Cardiology: The Case of Melatonin and Heartbeat Regularity. Medical Research Archives. 2022;10(5).
3. Dowse H, T VanKirk. Communication Between the Plasma Membrane and Cytosolic Cardiac Pacemakers: A Role for Melatonin? 2023;11(2). Medical Research Archives.
4. Roberts D. Drosophila melanogaster: the model organism. Entomologia Experimentalis et Applicata. 2006;121:93–103.
5. Yamaguchi M, Yoshida H. Drosophila as a Model Organism. Drosophila models for human diseases In: Advances in Experimental Medicine and Biology. Springer. 2018;1–10.
6. Rizki TM. The circulatory system and associated cells and tissues. In: Ashburner M; WT, editor. The Genetics and Biology of Drosophila. London: Academic Press. 1978;1839–1845.
7. Bodmer R, Venkatesh T V. Heart development in Drosophila and vertebrates: Conservation of molecular mechanisms. Dev Genet. 1998;186:181– 186.
8. Curtis NJ, Ringo JM, Dowse HB. Morphology of the pupal heart, adult heart, and associated tissues in the fruit fly, Drosophila melanogaster. J Morphol. 1999;240:225–235.
9. Bier E, Bodmer, R. Drosophila, An emerging model for cardiac disease. Gene. 2004;342:1–11.
10. Taghli–Lamallem O, Plantie E, Jagla K. Drosophila in the heart of understanding cardiac diseases: Modeling channelopathies and cardiomyopathies in the fruitfly. J Cardiovasc Dev and Dis. 2016;3:7–28.
11. Johnson E, Ringo J, Dowse H. Modulation of Drosophila heartbeat by neurotransmitters. J Comp Physiol B. 1997;167:89–97.
12. Johnson E, Ringo J, Dowse H. Native and heterologous neuropeptides are cardioactive in Drosophila melanogaster. J Insect Physiol. 2000;46:1229–1236.
13. Dowse H, Ringo J, Power et al. A congenital heart defect in Drosophila caused by an action–potential mutation. J Neurogenet. 1995;10:153–168.
14. Johnson E, Ringo J, Dowse H, et al. Genetic and pharmacological identification of ion channels central to the Drosophila cardiac pacemaker. J. Neurogenet. 1998;12:1–24.
15. Sullivan K, Scott K. The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proc Natl Acad Sci. 2000;97:5492– 5497.
16. Sanyal S, Consoulas H, Kuromi H, et al. Analysis of conditional paralytic mutants in Drosophila sarco– endoplasmic reticulum Calcium ATPase reveals novel mechanisms for regulation of membrane excitability. Genetics. 2005;169:737–750.
17. Sanyal S, Jennings T, Dowse H. et al. Conditional mutations in SERCA, the sarco–endoplalsmic reticulum Ca2+–ATPase, alter heart rate and rhythmicity in Drosophila. J Comp Physiol B. 2005;176:253–263.
18. Abraham M, Wolf M. Disruption of sarcoendoplasmic reticulum calcium ATPase function in Drosophila leads to cardiac dysfunction. PLOS ONE. 2013;8:e77785.
19. Curran M, Splawski I, Timothy K, et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 2006;1995;80:795–803.
20. Sanguinetti M, Jiang C, Curran M, et al. A mechanistic link between an inherited and an ac– quired cardiac arrythmia: HERG encodes the Ikr potassium channel. Cell. 1995;81:299–307.
21. Sanguinetti M, Curran M. Spectrum of HERG K+–channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA. 1996;93:2208–2212.
22. Warmke J, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and in mammals. Proc Natl Acad Sci USA. 1994;91:3438–3442.
23. Jackson F, Wilson S, Strichartz G. et al. Two types of mutants affecting voltage–sensitive sodium channels in Drosophila melanogaster. Nature. 1994;308:189–191.
24. Wang X, Reynolds E, Deak P. The seizure locus encodes the Drosophila homolog of the HERG potassium channel. J Neurosci. 1997;17:882–890.
25. Warmke J, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and in mammals. Proc Natl Acad Sci USA. 1994;91:3438–3442.
26. Taghli–Lamallem O, Plantie E, Jagla K. Drosophila in the heart of understanding cardiac diseases: Modeling channelopathies and cardiomyopathies in the fruitfly. J Cardivasc Dev Dis. 2016;3(7).
27. Tan DX, Reiter RJ, et al. Ischemia/perfusion induced arrhythmia in the isolated rat heart: prevention my melatonin. J Pineal Res. 1998;25:184–191.
28. Tan DX, Reiter RJ, et al. Ischemia/perfusion induced arrhythmia in the isolated rat heart: prevention my melatonin. J Pineal Res. 1998;25:184–191.
29. Bertuglia S, Reiter RJ. Melatonin reduces ventricular arrhythmias and preserves capillary perfusion during ischemia–reperfusion events in cardiomyopathic hamsters. J Pineal Res. 2007;42:55–63.
30. Diez ER, Prados LV, Carrión A, et al. A novel electrophysiologic effect of melatonin on ischemia/reperfusion–induced arrhythmias in isolated rat hearts. J. Pineal Res. 2009;46:155–160.
31. Benova T, Knezl V, Viczenczova C, et al. Acute anti– fibrillating and defibrillating potential of atorvastatin, melatonin, eicosapentaenoic acid and docosahexaenoic acid demonstrated in isolated heart model. J Physiol Pharmacol. 2015;66:83–89.
32. Goldberger L. Heartbeat Chaotic or Homestatic? Physiology. 1991;6:87–91.
33. Wu G–Q, Arzeno NM, et al. Chaotic Signatures of Heart Rate Variability and Its Power Spectrum in Health, Aging and Heart Failure. PLoS ONE. 2009;4:e4323.
34. Glass L. Introduction to Controversial Topics in Nonlinear Science: Is the Normal Heart Rate Chaotic? Chaos. 2009;19:028501.
35. Vinogradova T. Rhythmic Ryanodine Receptor Ca2+ releases during diastolic depolarization of sinoatrial pacemaker cells do not require membrane depolarization. Circ Res. 2004;94:802–809.
36. Lakatta e, DiFrancesco D. JMCC Point–Counterpoint: What keeps us ticking, a funny current, a Calcium clock, or both? J Mol Cell Cardiol. 2009;47(2):157–170.
37. Maltsev V, Lakatta E. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. Am J Physiol. 2009;296:H594–H615.
38. Lakatta E, Maltsev V, Vinogradova T. A coupled system of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circulation Research. 2010;106:659–673.
39. Wolk R. Arrhythmogenic mechanisms in left ventricular hypertrophy. Europace. 2000;2:216–223.
40. Sullivan K, Scott K. The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proc Natl Acad Sci USA. 2000;97:5492–5497.
41. Sanyal S, Consoulas H, Kuromi H, et al. Analysis of conditional paralytic mutants in Drosophila sarco– endoplasmic reticulum Calcium ATPase reveals novel mechanisms for regulation of membrane excitability. Genetics. 2005;169:737–750.
42. Sanyal S, Jennings T, Dowse H. et al. Conditional mutations in SERCA, the sarco–endoplalsmic reticulum Ca2+–ATPase, alter heart rate and rhythmicity in Drosophila. J Comp Physiol B. 2005;176:253–263.