Aurum Medical Publishing

Contact Info

Address:

+1-647-424-4697

[email protected]

server-bg

International Journal of Complementary and Internal Medicine

RESEARCH ARTICLE

Melanopsin and the influence of inner retinal photoreception

 

David John Mackay Smith.1,2* 

  • .1Clinician, SunDoctors Skin Cancer Clinics Noosaville, Queensland, Australia 
  • .2Senior lecturer in the Medical department, Queensland University, Australia
  •  

Corresponding Author: David John Mackay Smith, Clinician, Sun Doctors Skin Cancer Clinics Noosaville, Queensland, Australia. E-mail: djmsmith8@ bigpond.com

Received: September 18, 2024                                              Published: October 03, 2024

Citation: David S. Melanopsin and the influence of inner retinal photoreception. Int J Complement Intern Med. 2024;6(1):276–283. DOI: 10. 58349/IJCIM. 1. 6. 2024. 00142

Copyright: ©2024 John Mackay Smith. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.

 

Almost all species exhibit daily cycles of physiology and behaviour driven by an endogenous rhythmicity. This clockwork only provides a selective advantage when synchronised (entrained) to external time, measured by the repetitive, daily rotation of the earth on its axis and its annual movement around the sun. Humans have been traditionally considered to be a diurnal species, active in daylight and inactive with night but with the advent of urban living and artificial sources of lighting these rhythms of evolutionarily adapted patterns of behaviour and metabolism are being disturbed and redistributed. The disharmony is strongly expressed with shift-workers having higher rates of obesity, diabetes, metabolic syndrome and possibly prostate and breast cancer. Can these changes in human behaviour also be reflected more subtly in increasing rates of disease and cancer throughout the community. As a skin cancer clinician see an increasing diagnosis of melanoma, particularly. Does this represent maladaptive patterns of sun exposure. This certainly seems to be the case with recreational, rather than occupational exposure patterns. Gross changes in illumination at twilight, dawn and dusk, are the zeitgebers that entrain the endogenous clockwork, the circadian system. What percentage of the population regularly observe these changes of light and how influential is this on our well-being?

References 

1. Ebihara S, Tsuji, K. Entrainment of the circadian activity rhythm in the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol Behav. 1980;24:523- 527. 

2. Provencio I, Foster R. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res. 1995;694:183-190. 

3. Foster R, Argamaso S, Coleman S, et al. photoreceptor regulation of circadian behaviour: A mouse model. J Biol Rhythms. 1993;8:S17-S23. 

4. Yoshimura T, Ebihara S. Spectral sensitivity of photoreceptor mediation of phase-shifts of circadian rhythm in retinal degeneration CBA/J (rd/rd) and normal CBA/N(+/+) mice. J Comp Physiol (A). 1996;178:797- 802. 

5. Czeisler C, Shanahan T, Klerman E, et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med. 1995;332:6-11. 

6. Provencio I, Jiang G, Grip W, et al. Melanopsin: An opsin in melanophores, brain and eye. Proc Natl Acad Sci USA. 1998;95:340-345. 

7. Provencio I, Rodriguez I, Jiang G, et al. A novel human opsin in the inner retina. J Neurosci. 2000;20: 600-605. 

8. Gooley J, Lu J, Chou T, et al. Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci. 2001;4:1165. 

9. Berson D, Dunn F, Takao M, et al. Phototransduction by retinal ganglion cells that set the circadian clock. Science; 2001;295:1070-1073. 

10. Hatter S, Liao H, Takao M, et al. Melanopsincontaining retinal ganglion cells: architecture, projections and intrinsically photosensitivity. Science; 2002;295:1065-1070. 

11. Gooley J, Fischer D, Saper C. A broad role for melanopsin in nonvisual photoreception. J Neurosci. 2003;23:213-224. 

12. Morin L, Studholme K. Separation of function for classical and ganglion cell photoreceptors with respect to circadian rhythm entrainment and induction of photosomnolance. Neurosci. 2011;199:213-224. 

13. Tsai J, Hannabal J, Hagiwara G, et al. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-) mice. PLoS Biol. 2011;7:e1000125. 

14. Lupi D, Oster H, Thompson S, et al. The acute lightinduction of sleep is modulated by OPN4-based photoreception. Nat Neurosci; 2008;11:1068-1073. 

15. Altimus C, Guler A, Villa K, et al. Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci USA. 2008;105-2008. 

16. Vandewalle G, Maquet P, Dijk D. Light as a modulator of cognitive brain function. Trends Cogn Sci; 13:429-438. 

17. Johnson J, Wu V, Donovan M, et al. Melanopsindependent light avoidance in neonatal mice. Proc Natl Acad Sci USA. 2010;107:17374-17378. 

18. Somo, M, Gias C, Ahmado A, et al. Dissecting the role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PLoS One. 2010. 

19. Matynia A, Parikh S, Chen, et al. intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Exp Eye Res; 2012;105:60-69. 

20. Belenky M, Smeraski C, Provencio I, et al. Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol. 2003;460:380-393. 

21. Dumitrescu O, Pucci F, Wong K, et al. Ectopic retinal ON bipolar synapses in the OFF inner plexiform layer: contact with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol. 2009;507:226-244. 

22. Hoshi A, Liu W, Massey S, et al. ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina. J Neurosci. 2009;29:8875-8883. 

23. Viney T, Balint K, Hillier D, et al. Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr Biol. 2007;17:981-988. 

24. Ostergaard J, Hamibal J, Fahrankrug J. Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Opthalmol Vis Sci; 2007;48:3812- 3820. 

25. Brown T, Gias C, Hatori M, et al. Melanopsin contributions to irradiance coding in the thalamocortical visual system. PLoS Biol. 2010;8,e1000558. 

26. Brown T, Tsujimura S, Allen A, et al. Melanopsinbased brightness discrimination in mice and humans. Curr Biol. 2012;22:1134-1141. 

27. Zhange DQ, Wong K, Sollars P, et al. Intraretinal signalling by ganglion cell photoreceptors to dopaminergic amacrine neurons. PNAS. 2008;105(87):14181-14186.

28. Vugler A. Dopamine neurons form a discrete plexus with melanopsin cells in normal and degenerate retina. EXP Neurol. 2007;205:26-35. 

29. Brainard G, Hanifin J. Photons, clocks and consciousness. J Bio Rhythms; 2005;20:314-325. 

30. Berson D. Strange vison: retinal ganglion cells as circadian photoreceptors. Trends Neurosci. 2003;26: 314-320. 

31. Carrier J, Monk T. Circadian rhythm of performance: new trends. Chronobiol. 2000;17:719-732. 

32. Schmidt C. A time to think: circadian rhythms in human cognition. Cog neurophysiol. 2007;24:755-789. 

33. Blatter K, Cajochen C. Circadian rhythms in cognitive performance: methodological constrains, protocols, theoretical underpinnings. Physiol Behav. 2007;90:196- 208. 

34. Perrin F. Nonvisual responses to light exposure in the human brain during the circadian night. Curr Biol. 2004;14:1842-1846. 

35. Vandewalle G. Daytime light exposure dramatically enhances brain responses. Curr Biol; 2006;1:1616-1621. 

36. Vanderwalle G. Wavelength-dependnet modulation of brain response to a working memory task by daytime light exposure. Cereb Cortex. 2007;17:2788-2795. 

37. Vanderwalle G. Brain response to violet, blue and green monochromatic light exposure in humans; prominent role of blue light and the brainstem. PLoS ONE. 2007;2:e1247. 

38. Hatter S. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol. 2006;497:326-349. 

39. Morris J. A subcortical pathway to the right amygdala mediating “unseen” fear. Proc Natl Acad Sci USA. 1999;96:1680-1685. 

40. Castle M. Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience. 1999;134:657-669.