Aurum Medical Publishing

Contact Info

Address:

+1-647-424-4697

[email protected]

server-bg

International Journal of Complementary and Internal Medicine

RESEARCH ARTICLE

Chronic Stress: The Master Hallmark of Aging

 

Stephen Sideroff 

Departments of Psychiatry & Biobehavioral Sciences & Rheumatology

Corresponding Author: Stephen Sideroff. Departments of Psychiatry & Biobehavioral Sciences & Rheumatology University of California, Los Angeles, USA. E-mail: [email protected]

Received: June 04, 2025                                     Published: June 15, 2025

Citation: Stephen Sideroff. Chronic Stress: The Master Hallmark of Aging. Int J Complement Intern Med. 2025;6(3): 384– 393. DOI: 10. 58349/IJCIM. 3. 6. 2025. 00153

Copyright: ©2025 Sideroff S. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.

Abstract 

Chronic stress is a pervasive force in modern life, significantly impacting emotional well-being and physical health. This paper explores the profound effects of chronic stress on aging, positioning it as the master hallmark of aging. Chronic stress affects cognitive functioning and is also linked to various physical illnesses, including heart disease, irritable bowel syndrome, chronic fatigue, autoimmune symptoms, and contributing to accelerated aging markers. This paper discusses the central role of chronic stress in the psychoneurobiology of aging and the imbalance between the sympathetic arousal and parasympathetic recovery branches of the nervous system, leading to autonomic dysregulation. This dysregulation causes all systems in the body to work harder, generating more wear and tear and toxic waste products and leading to a breakdown in adaptation. The paper identifies the "Four Horsemen of Chronic Stress"— evolutionary mismatch, developmental lessons from childhood, the stress-success association, and conditioned stressors—as key structural factors driving chronic stress and autonomic imbalance. It also examines the impact of chronic stress on the 12 hallmarks of aging. While not presenting an exhaustive review of all the relevant evidence, this paper is focused on establishing the fundamental role of chronic stress in modulating the process of aging, along with a comprehensive model of resilience that incorporates all factors important in restoring and maintaining organismic balance and optimal adaptability and function.

References 

1. Kumar A, Rinwa P, Kaur G. Stress: Neurobiology, consequences and management. J Pharm Bioallied Sci. 2013;5:91–97. 

2. Song H, Fang F, Tomasson G, et al. Association of Stress-Related Disorders with Subsequent Autoimmune Disease. JAMA. 2018;319(23):2388-2400. 

3. Faresjö T, Busk Winquist E. Long-term stress linked to increased risk of heart attack. Sci Rep. 2021;11:12345. 

4. Thaiss C. Penn Medicine News. Glia cells link chronic stress to inflammatory bowel disease. Cell. 2023;185:1234–1245. 

5. Nath A, Koroshetz W. NIH study offers new clues into the causes of post-infectious ME/CFS. Nat Commun. 2024;15:6789. 

6. American Psychological Association. PTSD. Diagn. Stat. Man. Ment. Disord., 5th ed.; American Psychiatric Publishing: Washington, DC, 2013. 

7. Koob GF, Volkow ND. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–773. 

8. Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA. 2007;298:1685–1687. 

9. Morgado P, Cerqueira JJ. The impact of stress on cognition and motivation. Front Behav Neurosci. 2018;12:326. 

10. Scott SB, Graham-Engeland JE, Engeland CG, et al. The Effects of Stress on Cognitive Aging, Physiology and Emotion (ESCAPE) Project. BMC Psychiatry. 2015;15:146. 

11. Epel ES, Blackburn EH, Lin J, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 2004;101:17312–17315. 

12. Harvanek ZM, Fogelman N, Xu K, et al. Psychological and biological resilience modulates the effects of stress on epigenetic aging. Transl Psychiatry. 2021;11:601. 

13. Smith A, Jones B, Brown C. Effects of psychological stress on insulin resistance. J Endocrinol Metab. 2019;34:123–134. 

14. Whatmore GB, Kohli DR. Dysponesis: A neurophysiologic factor in functional disorders. Behav Sci. 1968;13:102–124. 

15. Whatmore GB, Kohli DR. The Physiopathology and Treatment of Functional Disorders: Including Anxiety States and Depression and the Role of Biofeedback Training; Grune & Stratton: New York, NY, USA, 1974. 

16. Krugers HJ, Hoogenraad CC, Groc L. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nat Rev Neurosci. 2010;11:675–681. 

17. Vyas A, Mitra R, Shankaranarayana Rao BS, et al. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. The Journal of Neuroscience. 2002;22(15):6810-6818. 

18. Monk C, Hane AA. Fetal and infant neurobehavioral development: Basic processes and environmental influences. In M. H. Bornstein (Ed.), The Oxford Handbook of Perinatal Psychology. 2014; pp.53-86. 

19. Hebb DO. The Organization of Behavior: A Neuropsychological Theory; Wiley: New York, NY, USA, 1949. 

20. Sideroff SI. The 9 pillars of resilience: The proven path to master stress, slow aging, and boost vitality. BenBella Books. 2024. 

21. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153: 1194–1217. 

22. Knezevic E, Nenic K, Milanovic V, et al. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells. 2023;12:2726. 

23. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–740. 

24. Carroll JE, Manczak EM, Pressman SD, et al. Chronic stress exposure and daily stress appraisals relate to biological aging marker p16^INK4a. Psychoneuroendocrinology. 2019;102:139–148. 

25. Rentscher KE, Carroll JE, Mitchell C, et al. Chronic stress increases transcriptomic indicators of biological aging in mouse bone marrow leukocytes. Psychoneuroendocrinology. 2022;137:105643. 

26. Wang J, Ge Y Chen F et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduct. Target Ther. 2023;8:220. 

27. Liu YZ, Wang YX, Jiang CL. Inflammation: The Common Pathway of Stress-Related Diseases. Front Hum Neurosci. 2017;11:316. 

28. Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection versus immunopathology. Allergy, Asthma & Clinical Immunology. 2009;4(1):1-2. 

29. Ruigrok SR, Stöberl N, Yam KY, et al. Modulation of the hypothalamic nutrient sensing pathways by sex and early-life stress. Front Neurosci. 2021;15:695367. 

30. Barton M, Prossnitz ER. Early life stress determines insulin signaling in adulthood. J Physiol. 2020;598:427–428. 

31. Puri D, Subramanyam D. Stress - (self) eating: Epigenetic regulation of autophagy in response to psychological stress. FEBS J. 2019;286:2447–2460. 

32. Du Preez A, Lefèvre Arbogast S, González Domínguez R, et al. Impaired Hippocampal Neurogenesis In Vitro Is Modulated by Dietary-Related Endogenous Factors and Associated with Depression in a Longitudinal Ageing Cohort Study. Mol Psychiatry. 2022;27:3425–3440. 

33. Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16:1024– 1033. 

34. Berding K, Carbia C, Cryan JF. Stress, depression, diet, and the gut microbiota: human–bacteria interactions at the core of psychoneuroimmunology. Int Rev Neurobiol. 2020;150:131– 156. 

35. Foster JA, McVey Neufeld KA. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–312. 

36. Sen P, Shah PP, Nativio R, et al. Epigenetic Mechanisms of Longevity and Aging. Cell. 2016;166(4); 822–839. 

37. Suderman M, Borghol N, Pappas JJ, et al. Childhood abuse is associated with methylation of multiple loci in adult DNA. BMC Med Genomics. 2014;7:13. 

38. Flint MS, Baum A, Chambers WH, et al. Chronic Stress Enhances Tumor Growth and Angiogenesis in a Mouse Model of Ovarian Carcinoma. Psychosom Med. 2009;71 (10):1084– 1092. 

39. Flaherty RL, Intabli H, Steele A, et al. Stress Hormone Signaling Through β2-Adrenergic Receptors Regulates DNA Damage Response to Chemotherapy. Cancer Res. 2019;79(1):145–158.

40. Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019;20:421–435. 

41. Van Hunsel F, Van Gastel A, Neels H, et al. The influence of psychological stress on total serum protein and patterns obtained in serum protein electrophoresis. Psychol Med. 1998;28:301–309. 

42. Sotiropoulos I, Catania C, Pinto LG, et al. Stress Acts Cumulatively to Precipitate Alzheimer's Disease-Like Tau Pathology and Cognitive Deficits. J Neurosci. 2011;31 (21):7840–7847. 

43. Sun N, Youle RJ, Finkel T. The Mitochondrial Basis of Aging. Mol Cell. 2016;61(5):654–666. 

44. Picard M, McEwen BS. Psychological Stress and Mitochondria: A Systematic Review. Psychosom Med. 2018,80(2),141–153. 

45. Oh J, Lee YD, Wagers AJ. Stem Cell Aging: Mechanisms, Regulators and Therapeutic Opportunities. Nat Med. 2014;20(8):870–880. 

46. Singh S,Jakubison B, KellerJR. Protection of hematopoietic stem cells from stress-induced exhaustion and aging. Curr Opin Hematol. 2020;27:225–231. 

47. Heidt T, SagerHB, Courties G, et al. Chronic Variable Stress Activates Hematopoietic Stem Cells. Nat Med. 2014;20(7):754– 758. 

48. Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev. 2022;73:101507. 

49. Carroll JE, Esquivel S, Goldberg A, et al. Longitudinal Change in Telomere Length and the Chronic Stress Response: Associations with Negative Affect, Rumination, and Sleep Quality. Psychoneuroendocrinology. 2019;102:225–232.