Research Article
Stem Anatomical Differences Among Cacti Species Growing in Wild and Greenhouse Conditions
Mayte Stefany Jiménez-Noriega.1 Teresa Terrazas.2 Alejandro De la Rosa-Tilapa.1 Dalia Grego-Valencia.3
- .1Jardín Botánico FES-Cuautitlán, Departamento de Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (FESC-UNAM). Cuautitlán Izcalli, 54714, State of Mexico
- .2Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City
- .3Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Tlalnepant la, 54090, Estado de México
Correspondence: Teresa Terrazas, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México. Email [email protected]
Received: November 19, 2024 Published: December 18, 2024
Citation: Jiménez-Noriega, et al. Stem Anatomical Differences Among Cacti Species Growing in Wild and Greenhouse Conditions. Horti Op Acc Jour. 2024;1(1):09–18.
Copyright: ©2024 Teresa. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.
Abstract
The possible anatomical variation of four cacti, Coryphantha cornifera, C. clavata, C. radians and Mammillaria magnimamma from wild and greenhouse sources, is explored as well as the implications of the variation on reintroduction to their natural communities. Three individuals per species per condition were fixed, processed using the paraffin technique, and one-way variance analysis applied to six variables. Results showed differences between wild and greenhouse individuals. Outer epidermal periclinal cell wall thickness had values >4 µm in the wild and <2.5 µm in green-house individuals, whereas for hypodermis values were higher (67-137 µm) in the wild than (34-70 µm) in the greenhouse plants. The epidermal tissue reduction in greenhouse compared to the wild may be related to irrigation and fertilization applied since plants were not exposed to periodic droughts, but vessel tracheids reduction may be related to the higher temperatures in greenhouse. Individuals from the wild showed parenchyma cells in the succulent regions (cortex and pith) whereas in two species of Coryphantha grown in greenhouse, the parenchyma cell walls lignified. This lignification of the stem succulent tissue reduces the ability of these collapsible cells to fold during a drought. Probably lignification will be deleterious for reintroductions, because the stems are more rigid. We conclude that special attention should be given to the horticultural practices (supply of nutrients and watering) to avoid structural modifications.
Keywords: Coryphantha, Mammillaria, anatomic variation, greenhouse, hypodermis; biominerals
References
1. Villaseñor JL. Checklist of the native vascular plants of Mexico. Rev Mex Biodivers 2016;87(3):559–902.
2. Vázquez-Sánchez M, Terrazas T, Grego-Valencia, et al. Growth form and wood evolution in the tribe Cacteae (Cactaceae). Willdenowia. 2017;47(1):49–67.
3. Hunt DR, Taylor NP, Charles G. The New Cactus Lexicon; dh Books. Port, UK, Milborne; 2006.
4. Vázquez-Benítez B, Arias S, Cervantes-Sandoval A. Variación Morfológica de Coryphantha (Cactaceae): Un enfoque multivariado. Acta Bot Mex. 2016;116:21–47.
5. Gómez-Hinostrosa C, Hernández HM. Diversity, geographical distribution, and conservation of Cactaceae in the Mier y Noriega region, Mexico. Biodivers Conserv 2000; 9: 403-418.
6. Hunt D. CITES Cactaceae Checklist. 3rd ed. Royal Botanical Garden Kew: Kew, UK; 2016.
7. Goettsch B, Hilton-Taylor C, Cruz-Piñón G. et al. High proportion of cactus species threatened with extinction. Nature Plants. 2015;1(10):1-7.
8. Hernández HM, Godinez AH. Contribución al conocimiento de las cactáceas mexicanas amenazadas. Acta Bot Mex. 1994; (26):33–52.
9. Hernández,HM, Bárcenas RT. Endangered cacti in the Chihuahuan desert: II. Biogeography and conservation. Conserv Biol. 1996;10(4):1200–1209.
10. Gaston KJ. Rarity; Springer Dordrecht: London, UK, 1994.
11. Giusti P, Vitti D, Fiocchetti F. et al. In Vitro propagation of three endangered cactus species. Sci Hortic. 2002; 95(4):319– 332.
12. Rubluo A, Chávez V, Martínez AP. et al. Strategies for the recovery of endangered orchids and cacti through In-Vitro culture. Biol Conserv. 1993;63(2):163–169.
13. Contreras C, Valverde T. Evaluation of the conservation status of a rare cactus (Mammillaria crucigera) through the analysis of its population dynamics. J Arid Environ. 2002; 51(1): 89– 102.
14. Leirana-Alcocer,J, Parra-Tabla V. Factors affecting the distribution, abundance and seedling survival of Mammillaria gaumeri, an endemic cactus of coastal Yucatán, México. J Arid Environ. 1999;41(4):421–428.
15. Stiling P, Rossi, Gordon D. The difficulties of single factor thinking in restoration. Biol Conserv. 2000;94(3):327–333.
16. García-Rubio O, Malda-Barrera G. Micropropagation and reintroduction of the endemic Mammillaria mathildae (Cactaceae) to its natural habitat. Hort Science. 2010;45(6): 934–938.
17. Shepherd T, Wynne Griffiths D. The effects of stress on plant cuticular waxes. New Phytol. 2006;171(3):469-499.
18. Arnold DH, Mauseth JD. Effects of environmental factors on development of wood. Am J Bot. 1999;86(3):367–371.
19. Metcalfe CR, Chalk L. Anatomy of the dicotyledons: leaves, stem, and wood in relation to taxonomy, with notes on economic uses; Oxford: Clarendon Press, UK, 1950.
20. Boke NH. Tubercle development in Mammillaria heyderi. Am J Bot. 1953;40:239–247.
21. Boke, N.H. Developmental anatomy and the validity of the genus Bartschella. Am J Bot. 1956;43:819–882.
22. Boke NH. Areole histogenesis in Mammillaria lasiacantha. Am J Bot. 1958;45:473–479.
23. Boke NH. Anatomy and development in Solisia. Am J Bot. 1960;47:59-65.
24. Gasson P. Epidermal anatomy of some North American globular cacti. Cactus Succul J G B. 1981;43(4):101–108.
25. Loza-Cornejo S, Terrazas T. Epidermal and hypodermal characteristics in North American Cactoideae (Cactaceae). J Plant Res. 2003;116:27–35.
26. Kalashnyk H, Nuzhyna N, Gaidarzhy M. Anatomical and morphological features of seedlings of some Cactoideae Eaton (Cactaceae Juss.) species. Acta Agrobot. 2016;69(4):1697.
27. Vázquez-Sánchez M, Terrazas T. Stem and wood allometric relationships in Cacteae (Cactaceae). Trees. 2011;25:755–767.
28. Maceda A, Soto-Hernández M, Peña-Valdivia CB. et al. Chemical composition of cacti wood and comparison with the wood of other taxonomic groups. Chem Biodivers. 2018;15(4):e1700574.
29. Boke NH. Leaf and areole development in Coryphantha. Am J Bot. 1952;39:134–145.
30. Boke NH. Areole Dimorphism in Coryphantha. Am J Bot. 1961;48(7):593–603.
31. Hartl WP, Klapper H, Barbier B. et al. Diversity of calcium oxalate crystalsin Cactaceae. Canad J Bot. 2007;85(5):501–517.
32. Frausto-Reyes C, Loza-Cornejo S, Terrazas T. et al. Raman spectroscopy study of calcium oxalate extracted from cacti stems. Appl Spectrosc. 2014; 68(11):1260–1265.
33. Avila-Escobar JE, Jiménez-Noriega MS, De la Rosa-Tilapa A. Comparative stem anatomy of three species of Coryphantha (Cactoideae-Cactaceae). Bot Sci. 2023;101(1):233–242.
34. De la Rosa-Tilapa A, Vázquez-Sánchez M, Terrazas, T. Stem anatomy of Turbinicarpus s.l. (Cacteae, Cactaceae) and its contribution to systematics. Plant Biosyst. 2019;153(4):600–609.
35. Nyffeler R, Eggli U. Comparative stem anatomy and systematics of Eriosyce sensu lato (Cactaceae). Ann Bot. 1997;80(6):767- 786.
36. Ruzin SE. Plant Microtechnique and Microscopy; Oxford University Press: Oxford, UK, 1999.
37. Maceda A, Andrés-Hernández AR, Terrazas T. Protocol to analyse the structural composition by fluorescence microscopy and different conventional and fluorescence staining methods. MethodsX. 2024;(13):e102999.
38. Karabourniotis G, Liakopoulos G, Bresta P. et al. The optical properties of leaf structural elements and their contribution to photosynthetic performance and photoprotection. Plants. 2021; 10(07):1455.
39. Baldini E, Facini O, Nerozzi F. et al. Leaf characteristics and optical properties of different woody species. Trees. 1997;12:73– 81.
40. Reynoud N, Petit J, Bres C. et al. The complex architecture of plant cuticles and its relation to multiple biological functions. Front Plant Sci. 2021;12:782773.
41. Sasidharan R, Voesenek LA, Pierik R. Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. CRC Crit Rev Plant Sci. 2011;30(6):548-562.
42. Cantu D, Vicente AR, Labavitch JM. et al. Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci. 2008;13(11):610–617.
43. Cosgrove DJ. Expansive growth of plant cell walls. Plant Physiol Biochem. 2000;38(1-2):109-124.
44. Leroux O. Collenchyma: versatile mechanical tissue with dynamic cell walls. Ann Bot. 2012;110(6):1083–1098.
45. Mauseth JD. Structure-function relationships in highly modified shoots of Cactaceae. Ann Bot. 2006;98(5):901–926.
46. López-Macías BM, Morales-Martínez SE, Loza-Cornejo S. et al. Variability and composition of calcium oxalate crystals in embryos-seedlings-adult plants of the globose cacti Mammillaria uncinate. Micron. 2019;125:102731.
47. Garrett TY, Huynh C, North GB. Root contraction helps protect the “living rock” cactus Ariocarpus fissuratus from lethal high temperatures when growing in rocky soil. Am J Bot. 2010; 97(12):1951–1960.
48. Camargo ELO, Nascimento LC, Soler M. et al. Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC Plant biol. 2014;14:1-17.
49. Mauseth, J.D. Comparative anatomy of tribes Cereeae and Browningieae (Cactaceae). Bradleya. 1996;14:66–81.
50. Salmon Y, Ditrich L, Sevanto S. et al. Drought impacts on tree phloem: from cell-level response to ecological significance. Tree Physiol. 2019; 39(2): 173–191.
51. De la Rosa-Tilapa A, Vázquez-Sánchez M, Terrazas T. Biominerals in the Cacteae tribe: chemical-morphological characterization, distribution and systematic perspectives. Flora. 2022;294:152129.
52. Al-Rais AH, Myers A, Watson L. The isolation and properties of oxalate crystals from plants. Ann Bot. 1971; 35(5): 1213–1218.
53. Çalişkan M. The metabolism of oxalic acid. Turk J Zool. 2000;24(1):103–106.
54. Fradera-Soler M. Grace MO, Jorgensen B. et al. Elastic and collapsible: current understanding of cell walls in succulent plants. J Exp Bot. 2022;73(8):2290–2307.
55. Arredondo G. A. Propagación y mantenimiento de cactáceas. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, 2002, Folleto Téc 21.
56. Jurik TW, Chabot JF, Chabot BF. Effects of light and nutrients on leaf size, CO2 exchange, and anatomy in wild strawberry (Fragaria Virginiana). Plant Physiol. 1982;70:1044-1048.
57. Wendling I, Dutra LF, Grossi F. Produção de Mudas de Espécies Lenhosas. 1st Ed.; Embrapa Florestas: Colombo, Brasil, 2006.
58. Oliveira LS de, Días PC, Brondani GE. Micropropagação de espécies florestais brasileiras. Pesqui Florest Bras. 2013;33:439– 453.