Research Article
Some physiological and productivity indicators in two chili pepper types (Capsicum annuum L.) under different water regimes
Aurelio Pedroza Sandoval.1* Ricardo Trejo Calzada.1 Isaac Gramillo Avila.1 José Rafael Minjares Fuentes.2
- .1Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo. Bermejillo, Durango, México; Km. 40 Carr. Gómez Palacio – Chihuahua, Bermejillo
- .2Facultad de Ciencias Químicas de la Universidad Juárez, Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010. Gómez Palacio, Durango
Correspondence: Aurelio Pedroza Sandoval, Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo. Bermejillo, Durango, México; Km. 40 Carr. Gómez Palacio – Chihuahua, Bermejillo, Mexico. Email [email protected]
Received: November 12, 2023 Published: November 28, 2023
Citation: Aurelio PS. Some physiological and productivity indicators in two chili pepper types (Capsicum annuum L.) under different water regimes. Horti Op Acc Jour. 2023;1(1):01–08.
Copyright: ©2023 Sandoval. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.
Abstract
The aim of this study was to explore some physiological and productive indicators of two chili pepper types (Capsicum annum L.) exposed to different watered regimes. A randomized block design in a split-plot arrangement with four replicates was used. The large plots were optimal water regime (OWR) corresponding to 25%±2, and suboptimal water regime (SOWR) corresponding to 20%±2; small plots were two chili pepper types: ‘Jalapeño’ and ‘Chilaca’. There were differences in the physiological and productivity variables between “Chilaca” and “Jalapeño” chili pepper types under OWR and SOWR. “Jalapeño” plants showed greater photosynthetic activity (µmol CO2 m2 /s), and transpiration (mmol H2O m2 /s), and both chili types, recorded a higher number of fruits per plant in OWR, and maintained the fruit productivity with of 3.94 and 2.99 kg/m2 in OWR and SOWR, respectively. In contrast, “chilaca” chili showed lower photosynthesis and transpiration rates, although it was compensated in productivity by its size and weight fruit with a production of 4.95 and 2.36 kg/m2 in OWR and SOWR, respectively. Jalapeño” chili had a greater physiological and productivity stability of physiological and productive behavior when going from optimal irrigation conditions (25%±2) to suboptimal ones (20%±2); while “chilaca” chili type showed the lowest yield in suboptimal irrigation.
Keywords: drought, water scarcity, plant physiology, agrifood, arid lands
Introduction
Chili peppers along with beans and maize are the oldest crops cultivated in the Americas.1 There are different species of chili pepper, but Capsicum annuum L. is the species of greatest commercial importance in the world, with a production of 24 million tons/year.2 In Mexico, the chili pepper crop has a social and economic importance due to its place in the nation’s gastronomy and its high demand as an agri-food in the market. Capsicum annuum is produced practically in all the states of Mexico, covering an area of 6 000 ha, with an average yield of 21.8 tons/ha and a production of 122, 491 tons per year in the country.3 Chili pepper growth and productivity is influenced by the environment and crop management. It is sensitive to low temperatures with an optimum of 20 – 26 ºC, and it requires fertile soils with mulch, adequate plant nutrition, and permanent water supply due to its high sensitivity to water deficit.4 Water availability is one of the biggest risk factor in crop production, due to the high frequency of droughts in the main hydrological watershed of the agricultural and livestock-producing areas.5 Droughts and overexploitation in Mexico have been an underlying for decades in the different irrigated agricultural areas, with consequences not only in the amount of available water but also in terms serious water quality problems. Scarcity and chemical contamination of water are part of the environmental impact on the agro ecosystem, with a negative effect on productivity and a high risk to health through the consumption of contaminated agri food products.6 Different producer-regions of chili pepper in northern Mexico are being adversely impacted by high water consumption of this crop used to maintain adequate levels of productivity.7 This production system makes intensive use of natural resources such as water. Some crop management alternatives are needed to produce chili peppers with lower amounts of water. The use of biostimulants during critical phenological stages of the crop.8,9 as well as the use of moisture retainers in the soil,10 and of plant species tolerant to water deficit.11,12 are proving to be good options to mitigate water scarcity.
References
1. Kaur R, Kaur K. Preservation of sweet pepper purees: Effect on chemical, bioactive and microbial quality. J Food Sci Technol. 2021;58,:3655-3660.
2. Latournerie MLJS, López VG, Castañón NJO Mijangos, et al. Evaluación agronómica de germoplasma de chile habanero (Capsicum chinense Jacq.). Agroproductividad. 2015; 1: 24-29.
3. SIAP. Avances de siembras y cosechas. Resumen por cultivo. 2020.
4. Dhaliwal MS, Sharma SPS, Jindal SK, et al. Growth and yield of bell pepper as influenced by growing environment, mulch, and planting date. Journal of Crop Improvement. 2017;31: 830-846.
5. Apurv T, Cai X. Impact of droughts on water supply in U.S. watersheds: The role of renewable surface and groundwater resources. Earth's Future. 2020; 8,e2020EF001648.
6. FAO. Water pollution from agriculture: a global review. Water Land and Ecosystem Research Program. Rome. 2017.
7. Ezquivel Valenzuela B, Cueto Wong JA, Valdez Cepeda RD, et al. Prácticas de manejo y análisis de riesgo por el uso de plaguicidas en la Comarca Lagunera, México. Revista Internacional de Contaminación Ambiental. 2019;35:25-33.
8. Fadiji AE, Babalola OO, Santoyo G et al. The Potential Role of Microbial Biostimulants in the Amelioration of Climate Change-Associated Abiotic Stresses on Crops. Front Microbiol. 2022;12:829099.
9. Sammi RK, Wakchaure GC, Wakchaure GC, et al. Plant Bio-stimulants for Mitigating Abiotic Stresses in Agriculture. Indian Journal of Fertilizers. 2023;19:788-800.
10. Yáñez Chávez LG, Pedroza Sandoval A, Trejo Calzada R, et al. Growth, Physiology, and Productivity of Bouteloua gracilis and Cenchrus ciliaris Using Moisture Retainers under Different Planting Methods. Agriculture. 2023;13:1134.
11. Díaz VY, Lazo RHO, Portilla LlJP, et al. Respuesta fisiológica al déficit hídrico in vitro y análisis proteómico preliminar en callos de cuatro cultivares de Allium cepa L. (cebolla). Idesia. 2012;30:11-21.
12. Luna Flores W, Estrada Medina H, Jiménez Osornio JJM. et al. Efecto del estrés hídrico sobre el crecimiento y eficiencia del uso del agua en plántulas de tres especies arbóreas caducifolias. Terra Latinoamericana. 2012;30:343-353.
13. Aguirre Mancilla CL, Iturriaga de la Fuente G, Ramírez Pimentel JG. El chile (C. annuum L.), cultivo y producción de semilla. Ciencia y Tecnología Agropecuaria México. 2017; 5,19-27.
14. Hernández Pérez T, Gómez García Ma Del R, Valverde ME, et al. Capsicum annuum (hot pepper): An ancient LatinAmerican crop with outstanding bioactive compounds and nutraceutical potential. A review Compr Rev Food Sci Food Saf. 2020; 19: 2972-2993.
15. Medina GG, Díaz PG, López HJ, et al. Estadísticas climatológicas básicas del Estado de Durango. (Período 1961 - 2003). Libro Técnico Núm. 1. Campo Experimental Valle del Guadiana. CIRNOCINIFAP. 2005.p.224.
16. Richards LA. Porous plate apparatus for measuring moisture retention and transmission by soil. Soil Science. 1948;66:105-110.
17. Chávez Barrantes N, y Gutiérrez Soto MV. Respuestas al estrés por calor en los cultivos. Tolerancia y tratamiento agronómico. Agronomía Mesoamericana. 2017;28:255-271.
18. Kramer PJ. Water Relations of Plants. New York Academic Press, New York, USA. 1983;489.
19. Fariñas MD, Jimenez Carretero D, Sancho Knapik D, et al. Instantaneous and nondestructive relative water content estimation from deep learning applied to resonant ultrasonic spectra of plant leaves. Plant Methods. 2019;15:128.
20. Ievinsh G. Water Content of Plant Tissues: So Simple That Almost Forgotten? Plants. 2023;12:1238.
21. Mota Ituarte M, Pedroza Sandoval A, Minjares Fuentes R, et al. Water deficit and salinity modify some morphometric, physiological, and productive attributes of Aloe vera (L.). Botanical Sciences. 2023;101:463-475.
22. Seleiman MF, Al Suhaibani N, Ali N, et al. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants. 2021;10:259.
23. Soltys Kalina D, Plich J, Strzelczykyta D. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of 'Katahdin'-derived potato cultivars. Breed Sci. 2016;66:328-331.
24. Sharma A, Kumar V, Shahzad B, et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J Plant Growth Regul. 2020; 39:509-531.
25. Urban L, Aarrouf J, Bidel LPR. Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence. Front Plant Sci. 2017;8:1-18.
26. Rosales MM, Maurel Ch, Nacry P. Abscisic Acid Coordinates Dose-Dependent Developmental and Hydraulic Responses of Roots to Water Deficit. Plant Physiology. 2019;180:2198-2211.
27. Buckley NT. How do stomata respond to water status? New Phytologist. 2019;224:21-36.
28. Jalakas P, Takahashi Y, Waadt R, et al. Molecular mechanisms of stomatal closure in response to rising vapourpressure deficit. New Phytologist. 2021;232:468-475.
29. Singh M, Singh P, Singh S, et al. A global meta-analysis of yield and water productivity responses of vegetables to deficit irrigation. Sci Rep. 2021;11:22095.
30. Gil Marín JA, Rodríguez R, Jasso Cantú D, et al. Resistencia estomática, transpiración y potencial hídrico en sábila con diferentes condiciones ambientales. Terra Latinoamericana. 2006;24:355-365.
31. Cao J, Jin Q, Kuang J, et al. Regulation of Flowering Timing by ABA-NnSnRK1 Signaling Pathway in Lotus. Int J Mol Sci. 2021; 22:3932.
32. Wang S, Xue J, Ahmadi N, t al. Molecular characterization and expression patterns of PsSVP genes reveal distinct roles in flower bud abortion and flowering in tree peony (Paeonia suffruticosa). Can J Plant Sci. 2017;94:1181- 1193.
33 Sun X Qin M, Yu QY, Ziwei H, et al. Molecular understanding of postharvest flower opening and senescence. Mol Horticulture. 2021;1:1-12.
34. Moriyah Z, Irish FV. Flower Development: Initiation, Differentiation, and Diversification. Annual Review of Cell and Developmental Biology. 2003;19:119-140.
35. Quintal OWC, Pérez Gutiérrez A, Latournerie ML, et al. Uso de agua, potencial hídrico y rendimiento de chile habanero (Capsicum chinense Jacq.). Revista Fitotecnia Mexicana. 2012; 35: 155-160.
36. Macias Bobadilla I, Vargas Hernandez M, Guevara Gonzalez RG, et al. Differential response to water deficit in chili pepper (Capsicum annuum L.) growing in two types of soil under different irrigation regimes. Agriculture. 2020;10:1-15.
37. Moreno FLP. Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agronomía Colombiana. 2009;27:179-191.
38. Delpire E, Gognon KB. Chapter One - Water Homeostasis and Cell Volume Maintenance and Regulation. Current Topics in Membranes. 2018;81:3-52.
39. Sifuentes Rodríguez NS, Pedroza Sandoval A, Zegbe JAy Trejo-Calzada. Indicadores de productividad y calidad de gel de sábila en condiciones de estrés salino. Revista Fitotecnia Mexicana. 2020;43:181-187.